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Abstract. Chromatic quasisymmetric functions of labeled graphs were defined by
Shareshian and Wachs as a refinement of Stanley’s chromatic symmetric functions.
In this extended abstract, we consider an extension of their definition from labeled
graphs to directed graphs, suggested by Richard Stanley. We obtain an F-basis expan-
sion of the chromatic quasisymmetric functions of all digraphs and a p-basis expan-
sion for all symmetric chromatic quasisymmetric functions of digraphs, extending work
of Shareshian-Wachs and Athanasiadis. We show that the chromatic quasisymmetric
functions of proper circular arc digraphs are symmetric functions, which generalizes a
result of Shareshian and Wachs on natural unit interval graphs. The directed cycle on n
vertices is contained in the class of proper circular arc digraphs, and we give a generat-
ing function for the e-basis expansion of the chromatic quasisymmetric function of the
directed cycle, refining a result of Stanley for the undirected cycle. We present a gen-
eralization of the Shareshian-Wachs refinement of the Stanley-Stembridge e-positivity
conjecture.
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1 Introduction

Let G = (V, E) be a (simple) graph. A proper coloring, κ : V → P, of G is an assignment
of positive integers, which we can think of as colors, to the vertices of G such that
adjacent vertices have different colors; in other words, if {i, j} ∈ E, then κ(i) 6= κ(j). The
chromatic polynomial of G, denoted χG(k), gives the number of proper colorings of G
using k colors. Stanley [17] defined a symmetric function refinement of the chromatic
polynomial, called the chromatic symmetric function of a graph. If we let the vertex set
of G be V = {v1, v2, · · · vn}, then the chromatic symmetric function of G is defined as

XG(x) = ∑
κ

xκ(v1)
xκ(v2) · · · xκ(vn)
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where the sum ranges over all proper colorings, κ, of G and κ(vi) denotes the color
of vi. The chromatic symmetric function of a graph refines the chromatic polyno-
mial, because if we replace x1, x2, · · · , xk with 1’s and all other variables with 0’s, then
XG(1, 1, · · · , 1, 0, 0, · · · ) = χG(k).

We can easily see that for any graph G, XG(x) ∈ ΛQ, where ΛQ is the Q-algebra of
symmetric functions in the variables x1, x2, · · · with coefficients in Q. For any basis, {bλ |
λ ` n}, of ΛQ, we say that a symmetric function, f ∈ ΛQ is b-positive if the expansion
of the function in terms of the bλ-basis has nonnegative coefficients. The symmetric
function bases we focus on in this paper are the power sum symmetric function basis,
pλ, and the elementary symmetric function basis, eλ. We assume familiarity with the
basic theory of symmetric and quasisymmetric functions, which can be found in [19].

Stanley [17] proves that ωXG(x) is p-positive for all graphs, G, where ω is the usual
involution on ΛQ. A long-standing conjecture on chromatic symmetric functions involves
their e-positivity. Recall that a poset is (a + b)-free if it has no induced subposet that
consists of a chain of length a and a chain of length b. The incomparability graph of a
poset P, denoted inc(P), is the graph whose vertices are the elements of P and whose
edges correspond to pairs of incomparable elements of P. The following conjecture is a
generalization of a particular case of a conjecture of Stembridge on immanants [20].

Conjecture 1 (Stanley-Stembridge [17]). Let P be a (3 + 1)-free poset. Then Xinc(P)(x) is
e-positive.

For subsequent work on chromatic symmetric functions, see the references in [13].
Shareshian and Wachs [14, 13] defined a quasisymmetric refinement of Stanley’s

chromatic symmetric function called the chromatic quasisymmetric function of a labeled
graph, G = ([n], E). Let κ : [n]→ P be a proper coloring of G. Define the ascent number
of κ as

asc(κ) = |{{i, j} ∈ E | i < j, κ(i) < κ(j)}|.
The chromatic quasisymmetric function of G is defined as

XG(x, t) = ∑
κ

tasc(κ)xκ(1)xκ(2) · · · xκ(n)

where κ ranges over all proper colorings of G. Notice that setting t = 1 reduces this
definition to Stanley’s original chromatic symmetric function.

In the Shareshian-Wachs chromatic quasisymmetric function of a graph, it is not hard
to see that the coefficient of tj for each j ∈N is a quasisymmetric function; however, the
coefficients do not have to be symmetric. If G is the path 1− 2− 3, then XG(x, t) has
symmetric coefficients, i.e. XG(x, t) ∈ ΛQ[t], but if G is the path 1 − 3 − 2, XG(x, t)
does not have symmetric coefficients (see [13, Example 3.2]). In general, XG(x, t) ∈
QSymQ[t], where QSymQ[t] is the ring of polynomials in t with coefficients in the ring
of quasisymmetric functions in the variables x1, x2, · · · with coefficients in Q.
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Shareshian and Wachs show that if G is natural unit interval graph (that is, a unit
interval graph with a certain natural labeling), then XG(x, t) ∈ ΛQ[t]. For G a natural
unit interval graph, they show that the coefficient of each power of t in XG(x, t) is Schur-
positive, and they conjecture that these coefficients are e-positive and e-unimodal. In fact,
Guay-Paquet [8] shows that if the Stanley-Stembridge conjecture holds for unit interval
graphs, then the conjecture holds in general. Hence the Shareshian-Wachs e-positivity
conjecture implies the Stanley-Stembridge conjecture. Shareshian and Wachs present a
formula for the e-basis expansion of XPn(x, t), where Pn is the path on n vertices with a
natural labeling, showing that XPn(x, t) is e-positive.

Shareshian and Wachs also conjectured a formula for the p-basis expansion of
ωXG(x, t), where G is a natural unit interval order, which would imply that ωXG(x, t) is
p-positive. Athanasiadis [3] later proved this formula.

There is an important connection between chromatic quasisymmetric functions
of natural unit interval graphs and Hessenberg varieties, which was conjectured
by Shareshian and Wachs and was proven by Brosnan and Chow [4] and later by
Guay-Paquet [9]. Clearman, Hyatt, Shelton, and Skandera [5] found an algebraic
interpretation of chromatic quasisymmetric functions of natural unit interval graphs
in terms of characters of type A Hecke algebras evaluated at Kazhdan-Lusztig basis
elements. Recently, Haglund and Wilson [10] discovered a connection between
chromatic quasisymmetric functions and Macdonald polynomials.

In this paper2, we extend the work of Shareshian and Wachs by considering chromatic
quasisymmetric functions of (simple) directed graphs3. For notational convenience, we
distinguish an undirected graph, G, from a digraph,

−→
G , with an arrow.

Definition 2. Let
−→
G = (V, E) be a digraph. Given a proper coloring, κ : V → P of

−→
G ,

we define the ascent number of κ as

asc(κ) = |{(vi, vj) ∈ E | κ(vi) < κ(vj)}|,

where (vi, vj) is an edge directed from vi to vj. Then the chromatic quasisymmetric function

of
−→
G is defined to be

X−→
G
(x, t) = ∑

κ

tasc(κ)xκ(v1)
xκ(v2) · · · xκ(vn)

where the sum is over all proper colorings, κ, of
−→
G .

As with the Shareshian-Wachs chromatic quasisymmetric function, setting t = 1
gives Stanley’s chromatic symmetric function. We can easily see that for any digraph,

2i.e. in the full version of this paper [6].
3See Remark 3.
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X−→
G
(x, t) ∈ QSymQ[t]. Notice that if we take a labeled graph G = ([n], E) and make a

digraph,
−→
G , by orienting each edge from the vertex with the smaller label to the vertex

with the larger label, then XG(x, t) = X−→
G
(x, t). In other words, this definition of the

chromatic quasisymmetric function of a digraph is equivalent to the Shareshian-Wachs
chromatic quasisymmetric function in the case of an acyclic digraph.

In this paper, we present an expansion of ωX−→
G
(x, t) in Gessel’s fundamental qua-

sisymmetric basis with positive coefficients for every digraph,
−→
G . We use this to obtain

a p-positivity formula for all digraphs
−→
G such that X−→

G
(x, t) ∈ ΛQ[t], which does not re-

duce to the formula in the acyclic case conjectured by Shareshian-Wachs [13] and proved
by Athanasiadis [3]. The simplest example of a non-acyclic digraph whose chromatic
quasisymmetric function is symmetric is

−→
Cn, the cycle on n vertices with edges oriented

cyclically. We give a factorization of the coefficients in the p-expansion of ωX−→
Cn
(x, t).

We determine a class of digraphs for which X−→
G
(x, t) ∈ ΛQ[t], namely proper circular

arc digraphs4. This class contains
−→
Cn as well as the natural unit interval graphs viewed

as digraphs. Hence our symmetry result generalizes the result of Shareshian and Wachs.
We present a few results on e-positivity, including a generating function formula for

X−→
Cn
(x, t), which is a t-analog of a result of Stanley [17, Proposition 5.4] and shows its

e-positivity. We present a generalization of the Shareshian-Wachs e-positivity conjecture
for proper circular arc digraphs. We also give a combinatorial interpretation of the coeffi-
cients in the elementary symmetric function expansion of the chromatic quasisymmetric
functions of the cycle, oriented cyclically, and the path, oriented in one direction.

Remark 3. The idea of extending chromatic quasisymmetric functions to directed graphs
was a suggestion made by Richard Stanley to the author after attending a talk on her
work on the chromatic quasisymmetric function of the labeled cycle [6].

Subsequent to our work, Alexandersson and Panova [2] independently obtained the
symmetry result of Section 4 and the results of Section 5. However, their proof of Theo-
rem 12, giving the e-expansion of X−→

Cn
(x, t), is very different from ours.

2 Expansion in the Fundamental Quasisymmetric Basis

For incomparability graphs of posets, Shareshian and Wachs give an expansion of
ωXG(x, t) into Gessel’s fundamental quasisymmetric basis, which shows that these
ωXG(x, t) are F-positive. We extend this result by presenting an F-basis expansion of
ωX−→

G
(x, t) for all digraphs, which shows that ωX−→

G
(x, t) is F-positive for all digraphs.

In general our formula does not reduce to the formula of Shareshian and Wachs,
so this gives another combinatorial description of the coefficients in the F-basis for

4A more general class of digraphs is given in the full version of this paper [6].



Chromatic Quasisymmetric Functions of Directed Graphs 5

incomparability graphs of posets.
Let
−→
G = ([n], E) be a digraph and let σ ∈ Sn. Define

inv−→
G
(σ) = |{(i, j) ∈ E | σ−1(j) < σ−1(i)}|,

i.e. the number of (i, j) pairs such that j comes before i in σ and there is a directed edge
from i to j in

−→
G .

Now let G = ([n], E) be an undirected graph and let σ = σ1σ2 · · · σn ∈ Sn. For each
x ∈ [n], define rank(G,σ)(x) as the length of the longest subword σi1σi2 · · · σik such that
i1 < i2 < · · · < ik, σik = x, and for each 1 ≤ j < k, {σij , σij+1} ∈ E. We say σ has a
G-descent at i if either rank(G,σ)(σi) > rank(G,σ)(σi+1) or rank(G,σ)(σi) = rank(G,σ)(σi+1)
and σi > σi+1. Let DESG(σ) be the set of G-descents of σ.

For example let G = C9, the cycle on 9 vertices labeled cyclically with 1, 2, ..., 9 and
let σ = 234658971 ∈ S9. We label each letter, x, of σ with rank(G,σ)(x) as follows:
213243615481927213. From this we see that DESG(σ) = {3, 5, 7}.

Theorem 4. Let
−→
G = ([n], E) be any directed graph. Then

ωX−→
G
(x, t) = ∑

σ∈Sn

Fn,DESG(σ)
(x)tinv−→

G
(σ)

where Fn,S(x) is Gessel’s fundamental quasisymmetric function and G is the underlying undi-
rected graph of

−→
G .

Note that our formula requires that
−→
G be labeled with [n]; however, X−→

G
(x, t) does

not depend on the labeling chosen.

3 Expansion in the Power Sum Symmetric Function Basis

In [17], Stanley showed that for any graph G, ωXG(x) is p-positive. In [13], Shareshian
and Wachs conjectured a formula for the p-expansion coefficients that established that
ωXG(x, t) is p-positive for any natural unit interval graph, G, and in [3], Athanasiadis
proved their conjecture. Here we present a p-positivity result for all digraphs whose
chromatic quasisymmetric functions have symmetric coefficients.

We give a formula for the coefficients of each pλ in the p-basis expansion of ωX−→
G
(x, t).

We can assume without loss of generality that the vertex set of
−→
G is [n]. We want to de-

fine a set of permutations, NG,λ, for every undirected graph G = ([n], E) and every
partition λ of n.

For any word w = w1w2 · · ·wk with distinct letters in [n], we say a letter wj with j > 1
is G-isolated if for all i < j, there is no edge between wi and wj in G.
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We define NG,λ as follows. If σ ∈ Sn, break σ up into contiguous segments of sizes
λ1, λ2, · · · , λk (in order) and call these pieces α1, α2, · · · αk. Then σ ∈ NG,λ means that
each segment αi has no G-isolated letters and does not contain any of the G-descents of
σ. So every permutation is in NG,(1)n .

In the last section, we determined that for G = C9 and σ = 234658971, DESG(σ) =
{3, 5, 7}. If we let λ = (3, 2, 2, 1, 1), then we break σ up into 234 | 65 | 89 | 7 | 1
and see that σ ∈ NG,λ. On the other hand, if µ = (3, 2, 2, 2), then σ is broken up into
234 | 65 | 89 | 71. Since 1 is an isolated vertex of 71, σ /∈ NG,µ.

Theorem 5. Let
−→
G = ([n], E) be a digraph such that X−→

G
(x, t) ∈ ΛQ[t]. Then

ωX−→
G
(x, t) = ∑

λ`n
z−1

λ pλ ∑
σ∈NG,λ

tinv−→
G
(σ),

where G is the underlying undirected graph of
−→
G . Consequently, ωX−→

G
(x, t) is p-positive.

Our proof of this general result involves a nontrivial extension of the technique
Athanasiadis used to prove the acyclic case. We use our F-basis expansion (Theorem 4),
a result of Athanasiadis [3, Proposition 3.2] coming from work of Adin and Roichman
[1], and a new sign-reversing involution on G-descent classes of permutations. We point
out that our result does not reduce, in an obvious way, to the Athanasiadis-Shareshian-
Wachs formula in the acyclic case. It gives a new formula for this case.

In [13, Proposition 7.8], Shareshian and Wachs showed that when
−→
G is acyclic, the co-

efficient of each z−1
λ pλ in ωX−→

G
(x, t) factors nicely. Though the coefficients of ωX−→

G
(x, t)

do not generally factor in the cyclic case, the coefficient of each z−1
λ pλ in ωX−→

Cn
(x, t) does

have a nice factorization involving the Eulerian polynomials.

Theorem 6. Let
−→
Cn be the cycle on n vertices directed cyclically and let λ = (λ1, λ2, · · · , λk) be

a partition of n. If k ≥ 2, then

∑
σ∈NCn ,λ

tinv−→
Cn

(σ)
= ntAk−1(t)

k

∏
i=1

[λi]t,

where [n]t = 1+ t + · · ·+ tn−1 and Ak(t) is the Eulerian polynomial. In the case that λ = (n),
we have

∑
σ∈NCn ,(n)

tinv−→
Cn

(σ)
= nt[n− 1]t.

Hence the coefficient of 1
n pn in ωX−→

Cn
(x, t) is nt[n− 1]t and for all other λ ` n, the coefficient of

z−1
λ pλ in ωX−→

Cn
(x, t) is ntAk−1(t)

k

∏
i=1

[λi]t.
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4 Graphs and Symmetry

In this section, we discuss a class of digraphs,
−→
G , such that X−→

G
(x, t) is symmetric. An

oriented graph5 will be called a {−→K12,
−→
K21}-free digraph if it avoids the induced subdi-

graphs
−→
K12 and

−→
K21, shown below.

The most well-known class of graphs discussed in this paper are interval graphs. Given
a collection of intervals on the real line, we can associate them with a graph by letting
each interval correspond to a vertex and each edge correspond to a pair of overlapping
intervals. Proper interval graphs are interval graphs in which no interval properly contains
another. Unit interval graphs are interval graphs in which each interval has unit length.

Proposition 7 (Roberts [12], Skrien [16]). Let G be a graph. Then the following statements
are equivalent:

1. G is a proper interval graph.
2. G is a unit interval graph.
3. G admits an acyclic orientation that makes it a {−→K12,

−→
K21}-free digraph.

The equivalence of (1) and (2) was shown by Roberts [12] and the equivalence of (1)
and (3) was shown by Skrien [16].

In [13], Shareshian and Wachs prove that chromatic quasisymmetric functions of la-
beled graphs have symmetric coefficients for natural unit interval graphs, which are unit
interval graphs with a specific labeling. For example, the path 1 − 2 − 3 is a natural
unit interval graph, but the paths 1− 3− 2 and 2− 1− 3 are not. Note that the digraph
associated with 2− 1− 3 is

−→
K12 and the digraph associated with 1− 3− 2 is

−→
K21. For the

remainder of the paper, we will use the term unit interval digraphs to refer to natural unit
interval graphs viewed as digraphs. It turns out that this is exactly the class of acyclic
{−→K12,

−→
K21}-free digraphs.

Now let us look at the circular analog of these graph classes. The circular analog of
interval graphs is the class of circular arc graphs. If we have a collection of arcs on a circle,
we can associate a graph to this collection by allowing each arc to correspond to a vertex
and each edge to correspond to a pair of overlapping arcs. Proper circular arc graphs are
circular arc graphs where no arc properly contains another.

Proposition 8 (Skrien [16]). Let G be a connected graph. Then the following statements
are equivalent:

1. G is a proper circular arc graph.
2. G admits an orientation that makes it a {−→K12,

−→
K21}-free digraph.

5An oriented graph is a digraph with no bidirected edges.
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For the remainder of this paper, we will refer to {−→K12,
−→
K21}-free digraphs as proper

circular arc digraphs, because this proposition shows that the underlying undirected graph
of each of the connected components of a {−→K12,

−→
K21}-free digraph is a proper circular arc

graph.
The smallest digraphs that do not have symmetric coefficients are

−→
K12 and

−→
K21. By the

work of Shareshian and Wachs, we know that chromatic quasisymmetric functions of
unit interval digraphs, or acyclic {−→K12,

−→
K21}-free digraphs, have symmetric coefficients.

We have the following generalization of this result. The proof closely follows the proof
of the Shareshian-Wachs symmetry result [13, Theorem 4.5].

Theorem 9. Let
−→
G be a proper circular arc digraph and let X−→

G
(x, t) be the chromatic quasisym-

metric function associated with the digraph
−→
G . Then X−→

G
(x, t) ∈ ΛQ[t].

Note that the converse of this statement is not true. In fact, the cycle with one edge
directed backwards is in ΛQ[t] [7]; however, for the rest of this paper, we will focus on
the chromatic quasisymmetric functions of proper circular arc digraphs.

5 Expansion in the Elementary Symmetric Function Basis

The Shareshian-Wachs conjecture stated in terms of digraphs says that the chromatic
quasisymmetric functions of unit interval digraphs are e-positive and e-unimodal, where
we call the palindromic6 polynomial XG(x, t) = ∑|E|j=0 aj(x)tj e-unimodal if aj+1(x)− aj(x)

is e-positive for 0 ≤ j < |E|−1
2 . We present a generalized version of this conjecture7.

Conjecture 10. Let
−→
G be a proper circular arc digraph. Then the palindromic8 polynomial

X−→
G
(x, t) is e-positive and e-unimodal.

For r, n ∈ N such that 1 ≤ r ≤ n define Gn,r = ([n], E) to be the graph on [n] with
{i, j} ∈ E if 0 < |i − j| < r. For example, Gn,1 is the graph on [n] with no edges, and
Gn,2 is the path on [n], where consecutive labels are adjacent. It is not difficult to see that
XGn,1(x, t) = en

1 . Shareshian and Wachs proved the conjecture for Gn,n−1 and Gn,n−2 [13,
Corollaries 8.2, 8.3, 8.4] as well as for the path, Gn,2 [15, Theorem 7.2], and the complete
graph, Gn,n for all n. They tested their conjecture for all Gn,r with n ≤ 8 and 1 ≤ r ≤ n.
Hence the new conjecture holds for these Gn,r graphs viewed as digraphs rather than
labeled graphs.

For r, n ∈N such that 1 ≤ r ≤
⌈n

2

⌉
, define the directed circular analog

−→
G ∗n,r = ([n], E)

to be the digraph on [n] with (i, j) ∈ E if 0 < (j− i) (mod n) < r. For example,
−→
G ∗n,2 is

6This is shown to be a palindromic polynomial in [13].
7An equivalent form of this conjecture is also noted in [2].
8This is shown to be a palindromic polynomial in [6].
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the cycle on n vertices with edges directed cyclically. We show in the next theorem that
X−→

G ∗n,2
(x, t) is e-positive and e-unimodal. We tested the e-positivity and e-unimodality of

−→
G ∗n,r for n ≤ 9 and r ≤

⌈n
2

⌉
.

Note that Conjecture 10 would imply the Shareshian-Wachs conjecture, which in
turn would imply the Stanley-Stembridge conjecture. In addition, Stanley [17] mentions
a class of graphs called circular indifference graphs, which turns out to be equivalent
to the class of proper circular arc graphs, as a possible class of graphs with e-positive
chromatic symmetric functions. Conjecture 10 refines this conjecture as well.

One can generalize [17, Theorem 3.3] of Stanley and [13, Theorem 5.3] of Shareshian
and Wachs to show that the sums of certain coefficients in the e-basis expansion are
positive.

Proposition 11. Let
−→
G be a proper circular arc digraph on n vertices with G as its

underlying undirected graph. Suppose we have the expansion X−→
G
(x, t) = ∑

λ`n
cλ(t)eλ.

Then
∑
λ`n

l(λ)=k

cλ(t) = ∑
ā∈AOk(G)

tasc−→
G
(ā)

where AOk(G) is the set of acyclic orientations of G with k sinks and asc−→
G
(ā) is the

number of edges of G for which ā and
−→
G have the same orientation.

The simplest proper circular arc digraphs that are not also unit interval digraphs are
the cycles on n vertices,

−→
Cn :=

−→
G ∗n,2. In [17, Proposition 5.4], Stanley provides a formula

for the e-basis expansion of the chromatic symmetric functions of undirected cycles that
show that they are e-positive. We refine his formula for the chromatic quasisymmetric
functions of directed cycles.

Theorem 12. For directed cycles,
−→
Cn,

∑
n≥2

X−→
Cn
(x, t)zn =

t ∑
k≥2

k[k− 1]tekzk

1− t ∑
k≥2

[k− 1]tekzk

where [k]t = 1 + t + · · · + tk−1. Consequently, X−→
Cn
(x, t) is palindromic, e-positive, and e-

unimodal.

We prove9 this by extending the technique of Stanley for the t = 1 case, which
uses the transfer matrix method [18], and by using a result on permutation statistics by
Mantaci and Rakotondrajao [11].

The following two propositions10 give combinatorial interpretations for the coeffi-
9An alternative proof of this result was subsequently obtained in [2].

10These two propositions were obtained independently in [2].
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cients in the e-basis expansion of the chromatic quasisymmetric functions of
−→
Pn , the path

on n vertices oriented in one direction, and of
−→
Cn, the cycle on n vertices oriented cycli-

cally. The first proposition uses our generating function for the e-basis expansion of
X−→

Cn
(x, t) seen in Theorem 12. The second proposition uses a similar generating function

by Shareshian and Wachs [13] for the e-basis expansion of X−→Pn
(x, t). Though the proofs

of these propositions rely on formulas that already give us e-positivity, perhaps there
is a generalization of these interpretations that suggests a possible method for proving
e-positivity for larger classes of graphs.

Proposition 13. Let
−→
Cn be the cycle on n vertices oriented cyclically with Cn as its under-

lying undirected graph and let X−→
Cn
(x, t) = ∑

λ`n
cλ(t)eλ. Then

cλ(t) = ∑
ā∈AOλ(Cn)

tasc−→
Cn

(ā)

where AOλ(Cn) is the set of all acyclic orientations of Cn such that the number of vertices
between consecutive sinks of ā is λ1− 1, λ2− 1,...,λk − 1 in any order and asc−→

Cn
(ā) is the

number of edges of
−→
Cn for which the orientations of

−→
Cn and ā agree.

Example 14. Suppose we have the following acyclic orientation of C9, the underlying
undirected graph of

−→
C9. For convenience, we label the vertices with the elements of [9]

such that the edges of the original
−→
C9 are oriented from smaller label to larger label,

except for the edge between 1 and 9, i.e. 1→ 2→ · · · → 9→ 1.

This corresponds to a t3e432 term, because there are 3 vertices between the sinks 2
and 6, 1 vertex between the sinks 6 and 8, and 2 vertices between the sinks 8 and 2. The
red edges are the 3 ascents of this orientation.

Proposition 15. Let
−→
Pn be the path of length n with edges oriented in one direction with

Pn as its underlying undirected graph and let X−→Pn
(x, t) = ∑

λ`n
cλ(t)eλ. Then

cλ(t) = ∑
ā∈AOλ(Pn)

tasc−→
Pn
(ā)
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where AOλ(Pn) is the set of all acyclic orientations of Pn such that the number of vertices
between consecutive sinks of ā (including the total number of vertices before the first sink
and after the last sink) is λ1− 1, λ2− 1,...,λk − 1 in any order and asc−→Pn

(ā) is the number

of edges of
−→
Pn for which the orientations of

−→
Pn and ā agree.

Example 16. Suppose we have the following acyclic orientation of P8, the underlying
undirected graph of

−→
P8 . For convenience, we label the vertices with the elements of [8]

such that the edges of the original digraph
−→
P8 are oriented from smaller label to larger

label, i.e. 1→ 2→ · · · → 8.

This corresponds to a t4e422 term, because there are 3 vertices between the sinks 2
and 6, 1 vertex between the sinks 6 and 8, 1 vertex before the 2 and none after the 8. The
red edges are the 4 ascents of this orientation.
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